
UCRL-WEB-204486

SLURM User Tutorial

June 2004

Morris Jette (jette@llnl.gov)
Lawrence Livermore National Laboratory

www.llnl.gov/linux/slurm

Disclaimer

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process discloses, or
represents that its use would not infringe privately owned rights. References herein
to any specific commercial product, process, or service by trade name, trademark,
manufacture, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of
California. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory under Contract
No. W-7405-Eng-48.

What is SLURM?

> Arbitrates requests by managing queue of pending work
> Allocates access to computer nodes within a cluster
> Launches parallel jobs and manages them (I/O, signals,

limits, etc.)

> NOT a comprehensive cluster administration or
monitoring package

> NOT a sophisticated scheduling system
- An external entity can manage the SLURM queues via plugin

(e.g. LCRM or Maui Scheduler)

SLURM in a Nutshell

Job 1
Job 2
Job 3
Job 4

Users submit
work, either to

LCRM or directly
to SLURM

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7

LCRM

SLURM allocates
nodes, starts and
manages the jobs

SLURM History

> Jointly developed by LLNL and Linux NetworX
- Mark Grondona (LLNL), Moe Jette (LLNL), Jay Windley (LNXI)

> Development began in 2002
> Production use at LLNL since 2Q 2003 on Linux

clusters with Quadrics switch
> Distributed by Linux NetworX since 1Q 2004
> Total distribution ~400 Linux Clusters world-wide

> Plans for 2004
- Port to IBM SP (LoadLeveler replacement on ASCI Purple)
- Scaling enhancements
- Port to IBM BlueGene/L system
- Support more flavors of MPI

Why Did LLNL Develop SLURM

> Alternatives have serious limitations
- Quadrics RMS - Works well, but only with Quadrics network
- Portable Batch System (PBS) - Portable, but not scalable
- IBM LoadLeveler - Neither portable not scalable
- Load Sharing Facility - Portable and fairly scalable, but very

expensive for large clusters

> SLURM is portable, scalable, and fault-tolerant

SLURM Entities

> Nodes

> Partitions

> Jobs

> Job steps

Partition 1 Partition 2

Job

Job

Job
Step Job

Step

Job
Step

How is SLURM Used at LLNL
LCRM Initiated Jobs

> LCRM decides when and where to initiate a job
> LCRM makes resource allocation in SLURM for the job
> LCRM sets some environment variables for the job (e.g.

SLURM_JOBID)
- WARNING: LCRM does not set all of the same environment

variables as SLURM (e.g. SLURM_NODELIST is not set)
> LCRM initiates the job script and it runs as any other

SLURM job
> LCRM releases the SLURM resource allocation at job

termination

How is SLURM Used at LLNL
 SLURM Initiated Jobs

> Interactive jobs are submitted directly to SLURM
> Jobs are scheduled on a FIFO (First-In First-Out)

basis per partition (backfill scheduling is an option)
> Job scripts can be submitted to SLURM using a

“batch” option. These jobs are independent of LCRM
> Only certain partitions can be used interactively to

avoid scheduling conflicts with LCRM

SLURM Architecture

> Two daemons
- slurmctld - controller, optional backup
- slurmd - computer node daemon

> Five user commands
- scontrol - administration tool, get/set configuration
- sinfo - reports general system information
- squeue - reports job and job step information
- srun - submit/initiate job or job step
- scancel - signal or cancel a job or job step

SLURM Architecture

slurmctld

> Orchestrates SLURM activities across entire cluster
(with optional backup)

> Components
- Job Manager - manages queue of pending jobs
- Node Manager - node state information
- Partition Manager - allocates nodes

slurmd

> Daemon executing on each compute node

> Performs actions as directed by slurmctld and srun

> Components
- Machine Status
- Job Status
- Remote Execution
- Stream Copy (stdin, stdout, and stderr)
- Job Control (signal)

sinfo

> Displays node and partition information
> Options permit you to filter, sort, and output

information in almost any way desired

mcri: sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
pbatch* up infinite 1 down* mcr587
pbatch* up infinite 1034 alloc mcr[104-586,588-973,979-1143]
pbatch* up infinite 13 idle mcr[974-978,1144-1151]
pdebug up 30:00 32 alloc mcr[40-55,64-79]
pdebug up 30:00 32 idle mcr[56-63,80-103]

Asterisk after
partition name

indicates default
partition

Asterisk after
node state

indicates it is not
responding

days:hours:minutes:seconds

Display partition and node state

squeue

> Displays job and job step information
> Options permit you to filter, sort, and output

information in almost any way desired

mcri: squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST
16000 pbatch spring alice R 6:46:04 869 mcr[104-586,588-973]
13601 pbatch summer brian R 4:03:53 165 mcr[979-1143]
70569 pdebug fall cheryl R 20:07 16 mcr[40-55]
70573 pdebug winter david R 6:40 16 mcr[64-79]
70574 pdebug season edith PD 0:00 64

days:hours:minutes:secondsR = Running
PD = Pending

Display running and pending jobs

squeue - Job Step Example

mcri: squeue -s
STEPID PARTITION USER TIME NODELIST
16000.0 pbatch alice 6:48:04 mcr[104-586,588-973]
13601.0 pbatch brian 4:05:53 mcr[979-1143]
70569.0 pdebug cheryl 22:07 mcr[40-55]
70569.1 pdebug cheryl 22:06 mcr[40-55]
70569.2 pdebug cheryl 22:05 mcr[40-55]
70569.3 pdebug cheryl 22:05 mcr[40-55]

days:hours:minutes:secondsJob 70569
has four
active steps

Display running job steps

srun

> User tool to initiate jobs and job steps
- Run jobs interactively
- Allocate resources
- Submit batch jobs
- Attach to currently running job
- Launch a set of parallel tasks (job step)

> 13 options to specify resource requirements
- Partition, processor count, node count, minimum memory

per node, minimum processor count per node, specific
nodes to use or avoid, node can be shared, etc.

srun - Interactive Example

mcri: srun --ntasks=4 --partition=pdebug --label /bin/hostname
0: mcr56
1: mcr56
2: mcr57
3: mcr57

Run a job interactively (waits for execution).
Create a four task (and implicitly four processor) resource allocation (job) in the
partition pdebug and execute the program /bin/hostname in it labeling the output.
The job’s resource allocation is automatically released upon termination of all tasks.

Could be MPI job

NOTE: Most SLURM command options have both a long form and a single letter
equivalent. The alternate form of the above command is
srun -n4 -p pdebug -l /bin/hostname

srun - Allocation Example

mcri: srun --ntasks=4 --partition=pdebug --allocate
mcr56: hostname
mcr56
mcr56: srun --label hostname
0: mcr56
1: mcr56
2: mcr57
3: mcr57
mcr56: srun --label --ntasks=2 hostname
0: mcr56
1: mcr57
mcr56: exit
mcri:

Create a four task (and implicitly four processor) resource allocation (job) in the
partition pdebug and spawn a shell to use it.
Launch two job steps (sequentially) to use the job’s allocation.
The job’s resource allocation is automatically released upon termination of the shell.

Job step maintains job’s four tasks

Job step explicitly specifies two tasks

srun - Batch Example

mcri: cat my_script
#!/bin/bash
srun --relative=0 --nodes=1 master &
srun --relative=1 --nodes=3 slave
wait
mcri: srun --nodes=4 --partition=pdebug --batch my_script
srun: jobid 13776 submitted
Later...
mcri: ls
my_script slurm-13776.err slurm-13776.out

Submit a batch job that executes different job steps on different nodes simultaneously

Job’s standard error and output
(default file names)

srun - Attach Example

mcri: srun --attach=13780
Output from job 13780

Attach to a existing SLURM job in Read-only mode. Standard error and output from
the job are sent to this srun in addition to any pre-existing srun command
associated with the job.

mcri: srun --attach=13781 --join
Output from job 13781
exit

Attach to a existing SLURM job in Read-write mode. The --join option permits
standard input and signals to be forwarded from this srun command to the job.

Input to job from this command

scancel

> Send arbitrary signal to a jobs and/or job step
> By default, sends SIGKILL terminating job
> Filters can be used to specify user, program name,

partition, job state, etc.

mcri: scancel 12345

Cancel job id 12345

mcri: scancel --interactive --user=brian
Cancel job id=13601 name=summer partition=pdebug [y/n]? y
Cancel job id=13777 name=NewJob partition=pdebug [y/n]? n

Cancel all jobs belonging to user brian with interaction

scontrol

> Administrative tool to set and get configuration
information

> Can be useful to users who want to see full state
information without fancy filtering or formatting
mcri: scontrol show partition pdebug
PartitionName=pdebug TotalNodes=64 TotalCPUs=128 RootOnly=NO
 Default=NO Shared=NO State=UP MaxTime=30
 MinNodes=1 MaxNodes=UNLIMITED AllowGroups=(null)
 Nodes=mcr[40-103] NodeIndecies=0,63,-1

mcri: scontrol show job 70573
JobId=70573 UserId=david(789) Name=winter JobState=RUNNING
 Priority=4294895192 Partition=pdebug BatchFlag=0
 AllocNode:Sid=mcr39:4277 TimeLimit=30
 StartTime=02/03-14:00:49 EndTime=02/03-14:30:49
 NodeList=mcr[64-79] NodeListIndecies=64,79,-1
 ReqProcs=0 MinNodes=0 Shared=0 Contiguous=0
 MinProcs=0 MinMemory=0 Features=(null) MinTmpDisk=0
 ReqNodeList=(null) ReqNodeListIndecies=-1

Common Questions

> Why isn’t my job running?
- First-In First-Out scheduling (backfill is configuration option)
- Jobs get held (priority reset to zero) if they can’t run due to

partition constraints (e.g. node count, time limit, etc.)

> Can I use MPICH, LAM/MPI, other version of MPI?
- Yes, but only Quadrics MPI uses slurmd to initiate tasks
- Other versions of MPI spawn processes that are not under

SLURM management
- Work to support MPICH and LAM/MPI is planned in 2004

More Common Questions

> How can I control the layout of my tasks?
- srun has a multitude of control mechanisms for this

– --ntasks=# // task count
– --nodes=min-max // node count (minimum and maximum)
– --nodes=# // minimum node count
– --cpus-per-task=# // count of CPUs required per task
– --relative=# // start allocation on specified node
– --nodelist=mcr[10-20] // include (at least) the listed nodes
– --exclude=mcr34,mcr40 // exclude listed node(s) from allocation

- We plan to add support for explicit task layout file

More Common Questions

> How can I establish different executables and/or
arguments for each task?
- We plan to add support for a file to control this
- For now, you will need to initiate the same executable on each

node. This can read the SLURM_PROCID environment
variable (same value as MPI rank) and execute a different
program using different arguments based upon this

More Information

> All SLURM commands and daemons have man
pages available

> All SLURM commands have summary of options
available
- “--usage” lists the options
- “--help” briefly explains all options

> SLURM web site: http://www.llnl.gov/linux/slurm/

> SLURM reference manual:
http://www.llnl.gov/LCdocs/slurm/

> LLNL users only: lc-hotline@llnl.gov, x24531

